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Theory of nucleation and growth during phase separation
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We present a new model for the entire process of phase-separation that combines steady-state homogeneous
nucleation theory with the classical Lifshitz-Slyozov mechanism of ripening, modified to account for the
substantial correlations among the droplets. A set of self-consistent interface equations describes the decay of
metastable states, incorporating naturally the crossover from early-stage nucleation to the late-stage scaling
regime withoutad hocassumptions. We present simulation results for both two and three dimensions. We also
present a mean-field, Thomas-Fermi approximation that provides an approximate solution to the many-body
problem.@S1063-651X~99!05503-8#
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I. INTRODUCTION

The theory of homogeneous nucleation has been a su
of research for at least 60 years@1#. A metastable state
evolves towards the stable equilibrium state via localiz
droplet fluctuations of a critical size. The critical energy f
the formation of a droplet is determined by a competiti
between a volume term~which favors creation of the droplet!
and a surface term~which favors its dissolution!. The critical
radiusRc results from this competition: droplets of sizeR
.Rc grow, while droplets withR,Rc shrink. Early theories
of homogeneous nucleation@1# have been generalized an
made rigorous, particularly through the work of Langer@2#.
Experimental tests@3# and computer simulations@4# are well
in accord with predictions. At present, the process of ea
time homogeneous nucleation is quite well understood.

This is also the case for late-time phase separation, kn
as Ostwald ripening. During this late stage, droplets coar
while maintaining local equilibrium. To reduce the syste
interfacial free energy, material diffuses away from sm
high-curvature droplets, which shrink and dissolve. This m
terial condenses onto large low-curvature droplets, wh
grow. This mechanism was first described by Lifshitz a
Slyozov, and Wagner@5#, in the limit of volume fractionf
→0, where interactions between droplets through their
fusion fields can be neglected. Since then, these interac
have attracted much research. The main results@6–8# are that
the universal scaling form of the droplet distribution functi
predicted by Lifshitz and Slyozov depends onf, and that the
predictedn51/3 power-law growth for the mean radius h
the following form:R(t)5@K(f)t#1/3, for late times, where
the coarsening rateK(f) is a monotonically increasing func
tion of f.

Experimentally, nucleation, growth and coarsening ha
been studied in traditional systems like binary fluids@3#, va-
por condensation@9#, melt crystallization@10#, as well as
precipitation reactions in supersaturated alloys@11#. Nontra-
ditional applications of these ideas have been made in
study of glasses and amorphous materials@12#, in cavities in
metastable viscous fluids with modulated pressure@13#, and
in three-dimensional clusters on two-dimensional surfa
@14#.
PRE 591063-651X/99/59~4!/4175~13!/$15.00
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With these two regimes of early and late time being re
sonably well understood, the question remains: How does
system proceed from nucleation to the late stage of Ostw
ripening? This was first addressed in the seminal work
Langer and Schwartz@15#, who used a mean-field approac
to study the nonlinear dynamical equations of motion fo
phase separating system with both nucleation and growt
droplets. There are more recent models and experiments
cerning the description of nucleation and growth within
single framework. For instance, chemical reaction rate the
has been used, within a mean-field framework, to model
kinetics of precipitation reactions in Al alloys@16#. Many
mean-field theories@17# are modifications of the formalism
first proposed by Kolmogorov, Johnson and Mehl, a
Avrami @1#. They involve isothermal, time transformatio
relations that relate the volume fraction of the transform
phase at a given time with growth rate, nucleation frequen
and shape factors. Such theories consider systems where
fusive effects within the matrix, from either monomer diffu
sion or the release of latent heat from droplets, can be
glected. That is, unlike the present situation, any Ostw
ripening regime is of negligibly short duration.

None of these mean-field theories includes correlati
between droplets. Experimental evidence@18#, however, em-
phasizes the importance of interparticle diffusional inter
tions and of particle spatial locations on nucleation a
growth, and thus, the need for a theory to include such c
relation effects. Tokuyama and Enomoto@19# studied the
effects of correlations on the kinetics of the crossover reg
for a three-dimensional system. However, their study did
include nucleation and was based on a perturbative exp
sion in the volume fractionf, to orderAf.

In this paper@20#, we introduce a new model that com
bines steady-state homogeneous nucleation theory with
classical Lifshitz-Slyozov mechanism, modified to accou
for the substantial correlations amongst the droplets. O
model is formulated in terms of a set of self-consistent int
face equations, which are then solved numerically both
two dimensions~2D! and in three dimensions~3D!. This new
formalism naturally incorporates the crossover from t
early-stage nucleation regime to the late-stage scaling
gime. We also present a mean-field, Thomas-Fermi appr
4175 ©1999 The American Physical Society
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4176 PRE 59CELESTE SAGUI AND MARTIN GRANT
mation that includes these correlation effects. We note
we have not incorporated elastic effects, which are impor
in some instances. It is straightforward to generalize our
proach to include such effects, if they are important. T
paper is organized as follows. In Sec. II, we introduce o
model, while in Sec. III, we describe the simulation metho
Our mean-field theory is presented in Sec. IV, while Sec
gives our results, and concludes the paper.

II. MODEL

The energy for the formation of a droplet of radiusR has
a surface and a volume term:

E~R!5asRd212
vDm

vm
Rd, ~1!

in d dimensions. Herein,s is the surface tension,vm
is the molecular volume,v5pd/2/G(d/211), a5dv, Dm
.kT„C(t)2Ceq(`)…/Ceq(`) is the variation in chemica
potential,k is Boltzmann’s constant,T is the temperature
C(t) is the time-dependent supersaturation, andCeq(`) is
the solute concentration in the matrix at a planar interface
a phase-separated system. The energy has a maximum
critical radiusRc given by

Rc5
~d21!vms

Dm
, ~2!

such that the critical energyE(Rc)[Ec5vsRc
d21 .

Our study makes use of dimensionless variables. Unit
length and time are given in terms of the capillary leng
l c5(d21)svm /(kT) and the characteristic timetc

5 l c
2/@DCeq(`)vm#, whereD is the diffusion coefficient. We

also introduce a dimensionless concentration fieldu(r ,t)
5@C(r ,t)2Ceq(`)#/Ceq(`), whose value far from any
droplet is the time-dependent supersaturationx(t), and the
dimensionless parameterx0

d215vs l c
d21/(kT). Expressed in

dimensionless form~i.e., Rc / l c→Rc), the critical radius be-
comes

Rc5
1

x~ t !
, ~3!

and the dimensionless energy ratioEc /kT can be expresse
as

Ec

kT
5S x0

x~ t ! D
d21

. ~4!

The relation betweenx(t),x0 and the corresponding param
eters used by Langer and Schwartz,x* (t),x0* @15#, is x(t)
.(b/2)x* (t) andx0.(b/2)x0* , whereb is the critical ex-
ponent for temperature dependence of the concentration
the critical temperature (DC;uT2Tcub). For 3D, Langer
and Schwartz usedb51/3 andx0* ;1 which givesx0;1/6
for our parameter in 3D. Note thatx0

d21 determines the in-
tensity of noise, since it is proportional to 1/T.

The nucleation rate gives the number of droplets nuc
ated per unit volume per unit time for a given supersatu
tion. It has the general form
at
nt
p-
s
r
.

in
t a

of

ear

-
-

J5
1

t
Ve2~Ec /kT!, ~5!

wheret is the time scale for the macroscopic fluctuations,V
is the volume of phase space accessible for fluctuations,
e2(Ec /kT) is the Boltzmann probability factor for nucleatio
of a droplet. The field-theoretic steady-state nucleation r
has been studied extensively in the literature@2,15,21#. Here
we reproduce the results in dimensionless form for sp
dimensiond:

Jd~ t !5AdS x~ t !

x0
D ad

bd expF2S x0

x~ t ! D
d21G , ~6!

where a352/3,a254, b35(11x(t)/x0)3.55, b251, and
Ad5x0

d13/v is a constant. The nucleation rateJd(t) can be
written as a radial integration of adistributednucleation rate
j d(R,t):

Jd~ t !5E
0

`

j d~R,t !dR. ~7!

A reasonable assumption forj d(R,t) is a Gaussian form, i.e.

j d~R,t !5
1

A2p~dR!
expF2

~R2Rc!
2

2~dR!2 GJd~ t !. ~8!

Considered only as a function of radius, the droplet ene
~1! is a maximum at the critical radius, and thus (dR)2 can
be written as (dR)252@Ec2E(R)#/uEc9u, whereEc andEc9
are the functionsE(R) and its second derivative evaluated
R5Rc . Langer@2# showed that when the droplet energy
not only a function of radiusR but also of capillary wave-
length fluctuationsw, then droplets appear at the saddle po
in the surfaceE(R,w). In this case, the surface of the dropl
is described by a functiona@RA11(w/R)2#d21 so that the
change in the droplet energy due to nonzerow is DE(R)
5asRd21(d21)(w/R)2/2. Both approaches lead to th
same width of the distribution~with w[dR), that can be
computed as that corresponding to an uncertainty in the
tivation energy of the order ofkT/2. In dimensionless form
it is

~dR!25
Rc

32d

d~d21!x0
d21

. ~9!

In our study, we consider different forms ofdR, since dif-
ferent initial distributions of droplets can lead to very diffe
ent intermediate regimes, and it is possible to envision m
different experimental situations in which the width of th
distribution does not necessarily follow Eq.~9!. For example,
it is possible to adjust the polydispersivity of the distributio
by quenching in prescribed steps in temperature, and by
corporating some degree of heterogeneous nucleation.

Next, we consider the growth and ripening problem.
order to generalize the Langer-Schwartz theory to nonz
volume fraction, one needs to determine the diffusional
teraction of a droplet with its surroundings. The time evo
tion of the system is described by the multi-droplet diffusi
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equation for the concentration fieldu(r ,t). In the monopole
approximation, the coarsening phase is spherical and fixe
space. The emission or absorption of solute from growing
dissolving particles is modeled by placing point sources
sinks of solute at the centerr i of each particlei. The multi-
droplet diffusion equation then becomes

]u~r ,t !

]t
2¹2u~r ,t !52a(

i 51

N~ t !

Qid~r2r i !, ~10!

where the coefficientsQi describe the strength of the sour
or sink of the current for diffusion. We assume spheri
droplets in local equilibrium; hence, the concentration n
the interface is determined by the local curvature and sur
tension, consistent with the Gibbs-Thompson boundary c
dition:

u~Ri !51/Ri , ~11!

in dimensionless form.
The radial growth law is obtained from a local continui

equation in a volume that encloses only one droplet:

Ri
d21 dRi

dt
5Qi . ~12!

If f is the constant volume fraction of the minority phas
the conservation of mass requires

x~ t !1v(
i 51

N~ t !

Ri
d5f. ~13!

The time derivative of the second term on the left-hand s
gives two contributions: one due to the growth or dissolut
of existing droplets,a( i 51

N(t)Ri
d21Ṙi , and another due to th

time variation of the number of dropletsN(t) during nucle-
ation, which we shall callaQnucl , and whose expression i
given later in Eq.~23!. Thus, the time derivative of Eq.~13!
is

]x~ t !

]t
1a(

i 51

N~ t !

Qi1aQnucl50; ~14!

the supersaturationx(t) varies due to either nucleation o
new droplets via]x/]tun52aQnucl , or growth/dissolution
of existing droplets via]x/]tug52a( i 51

N(t)Qi .
Equations~6!, ~10!, ~11!, ~12!, and ~14! contain all the

elements necessary to describe the phase separation o
system from the initial nucleation regime to the late-tim
Ostwald ripening regime. First, we need to provide a solut
for Eq. ~10!. In the Appendix, we give a formal solution fo
this equation, Eq.~A2!, that employs a retarded Green
function. When this solution is averaged over the surface
the i th particle, one obtains Eq.~A5!, which we rewrite here
for the three-dimensional case:

Qi

Ri
5x~ t !2

1

Ri
24p(

j Þ i

N E
0

t

dsexpS 2
ur i2r j u2

4s DQj~ t2s!

~4ps!3/2
.

~15!
in
r
r

l
r

ce
n-

,

e
n

the

n

f

In this equation an approximation has been made: the ti
dependent Green’s function is used in the integration of
the particlesj with j Þ i , while in particlei it is replaced by
the corresponding stationary Green’s function. This eq
tion, together with Eq.~12!, was used in Ref.@19# to study
the evolution of a three-dimensional system with agiven,
initial distribution of particles. It represents the many-bo
effects due to the diffusive long-range interactions amo
droplets, and therefore a closed-form solution cannot be w
ten. The authors employed a systematic expansion in pow
of Af and solved the equation to first order. Later, we w
seek a solution of a similar equation by introducing
Thomas-Fermi approximation.

Here we propose an ansatz for the solution of Eq.~10!.
Instead of using retarded Green’s functions for the soluti
we use time-independent Green’s functions, specifica
G3(r2r 8)51/ur2r 8u in 3D and G2(r2r 8)5 ln(ur2r 8u/L)
in 2D, whereL is the system size. To take into account t
time evolution of the supersaturationx(t), we introduce a
coefficientQ0(t), that will be related to the coefficientsQi
through the conservation law. In 3D, the proposed solut
reads

1

Ri
5Q0~ t !2

Qi

Ri
2(

j Þ i

N~ t !
Qj

ur i2r j u
. ~16!

In 2D it is

1

Ri
5Q0~ t !2Qi lnS Ri

L D2(
j Þ i

N~ t !

Qj lnS ur i2r j u
L D . ~17!

The introduction of the coefficientQ0(t), instead of the re-
tarded Green’s function, is based on the assumption tha
behavior of the supersaturation field outside the droplets
be described in a mean-field manner. Notice that in
steady-state Ostwald ripening regimeQ0(t)[x(t), soQ0(t)
acts like an ‘‘effective’’ supersaturation, whose variation
time allows for the diffusive growth of particles. Since at la
times, x(t)→1/̂ R(t)&, where ^R(t)& is the mean radius
thenC0(t)5Q0(t)21/̂ R&→0 at late times. This quantity is
plotted for a particular set of parameters in Fig. 3.

We have numerically tested that there is no measura
difference between the exact solution of Eq.~15! and our
ansatz. Hence we used the approximate solution: It is ea
to solve numerically. In particular, we note that this ans
does not force long-range interactions to be present. For
initial stages of nucleation, theQi(t), through which long-
range interactions potentially enter, are practically zero.
time increases, theseQi(t) increase as well, and the syste
crosses over naturally to a regime where long-range inte
tions become important.

A mean-field treatment of the variation of the supersa
ration means that the variation ofx(t) due to nucleation,
]x/]tun , is computed using the theoretical nucleation rate
Eq. ~6! according to a simple scheme that we describe in S
III, while the variation due to growth or dissolution of exis
ing droplets is given by

]x

]t U
g

52a(
i 51

N~ t ! Ri
d22

Cd~Ri !
S x~ t !2

1

Ri
D , ~18!
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4178 PRE 59CELESTE SAGUI AND MARTIN GRANT
whereC3(Ri)51 in 3D, andC2(Ri)5 ln(L/Ri) in 2D. Defin-
ing the average of a function f (R) as ^ f (R)&
5(1/N)( i f (Ri) and ^^1/R&&5^@R ln(R/L)#21&/
^@ln(R/L)#21&, the above equation in 3D becomes:

(
i 51

N~ t !

Qi5N^R&S x~ t !2
1

^R& D . ~19!

In 2D, it becomes

(
i 51

N~ t !

Qi5^@ ln~L/R!#21&N@x~ t !2^^1/R&&#. ~20!

Equations~16! and ~19! in 3D, and ~17! and ~20! in 2D,
represent a set ofN11 linear coupled equations for theN
coefficientsQi and the coefficientQ0 . Together with the
growth equation Eq.~12! and the nucleation rate equatio
Eq. ~6!, they constitute a formal solution to the nucleati
and growth problem.

The multiparticle diffusion problem can be solved using
multipole expansion method valid to an arbitrary order of
expansion. We shall only consider the lowest-order term
this expansion, the monopole approximation, which is r
sonable for volume fractionsf<0.10, as shown in the stud
of Akaiwa and Voorhees@8#. Higher-order approximations
useful for the study of larger volume fractions, can
handled following their approach. Qualitatively, the mul
pole expansion behaves as follows. To the next order, a
pole term appears which leads to a nonuniform concentra
gradient along the surface of the~still spherical! droplets,
which now migrate with a velocity linearly dependent o
coefficients from first-order spherical harmonics@8#. Higher-
order multipole terms result in nonspherical droplets.

III. SIMULATIONS

In the previous section, we obtained a set of equations
the description of nucleation, diffusive growth and ripeni
in a phase-separating system. The numerical solution
similar sets of self-consistent equations for the Ostwald
ening regime has been described in detail in the litera
@7,22#, so here we shall describe only the main differenc
with the previous simulation procedures.

As in previous work, the simulation results do not depe
on the system sizeL, provided length and time in the syste
are rescaled byL and L3, respectively, implying that the
nucleation rate in Eq.~6! is rescaled by 1/Ld13. When
choosing the edge length of the box enclosing the syst
certain care must be taken, however. The dimensions of
vectors and matrices in the code depend on the maxim
numberNmax of droplets that can be nucleated. Therefo
one choosesNmax according to computational limitations
and chooses the edge lengthL that can accommodate tha
number for a given volume fractionf. Hence,L must be
optimized with trial runs indicating the number of drople
N(t) nucleated, and their maximum number. With a con
nient L, relevant quantities are properly rescaled as, for
ample,Jd(t)→Jd(t)Ld13, Rc(t50)→1/(fL), and produc-
tion runs can be done.

For homogeneous nucleation, the time evolution start
e
n
-

i-
n

or

of
-

re
s

d

,
he
m
,

-
-

in

an initially supersaturated state,x(t50)5f. The equations
are integrated numerically using an Euler discretizat
scheme with a variable time incrementdt. That increment is
the smaller of two time intervals: the time needed to nucle
dtn , or eliminatedtr , one droplet. Since the nucleation ra
represents the number of nucleated droplets per unit volu
per unit time at a given supersaturationx(t), we have

dtn5
1

Jd@x~ t !#
, ~21!

Note that the scaled volume of the system is unity. The
tegration of the growth equation for dropleti gives Ri

d(t
1dt)5Ri

d(t)1(Qid)dt. Hence,

dtr5minH 2
Ri

d

Qid
J , ~22!

for all i. This will typically be the smallest droplet, whic
will usually have the largest negative current for growthQ,
along with the smallestR. Occasionally, however, the prox
imity of nearby droplets may lead to a particularly largeQ
for a larger droplet, implying a differentdtr .

The actual time intervaldt is the smaller ofdtn anddtr .
Suppose the minimum time interval favors nucleation o
droplet. Then the radius of the dropletRdrop is chosen with
the Box-Muller method for generating random deviates w
a Gaussian distribution consistent with Eq.~8!. Each coordi-
nate is chosen as a uniform random deviate between 0.0
1.0, avoiding overlap with existing droplets@23#. The nucle-
ated droplet represents a small fraction of the supersat
tion, whose new value isx(t1dt* )5x(t)2vRdrop

d . Thus,
we identify Qnucl in Eq. ~14! as

Qnucl5
Rdrop

d

d dt*
. ~23!

Radii Ri and supersaturationx(t) are updated following the
appropriatedt. The minimumdt must be computed self
consistently. For instance, immediately after a nucleat
process, or the integration of the radial growth equation,
must compute a new set of coefficients$Qi% that, naturally,
modifies the time intervaldtr . One must also compute a ne
time interval dtn , since the supersaturation has chang
This ‘‘time bookkeeping’’ permits the self-consistent sele
tion of the intervaldt: the path of minimumdt is completely
determined by the dynamical equations of the system.

IV. MEAN-FIELD APPROXIMATION

In this section we extend a mean-field approach used
the late time Ostwald ripening regime@7# to include the
nucleation and crossover regimes. For nonzero volume f
tion f, droplet-screening and many-droplet correlation
fects are approximated in the same manner as the Thom
Fermi mechanism for Coulomb systems. Within a mean-fi
approximation, the change in volume of a droplet depends
the concentration gradients set up by all the droplets, that
be written as( j I int(Ri ,Rj )@x(t)21/Rj #, whereI int(Ri ,Rj )
is the interaction matrix. In the mean-field approximation,
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droplets are equivalent, soI int(R,R8)}I (R)dR,R8 . The
growth law then becomes

d~vRi
d!

dt
5I ~Ri !S x~ t !2

1

Ri
D . ~24!

In this approximation, the flux determining the growth ra
for each droplet is only proportional to the difference b
tween the boundary concentration and the supersatura
The rate coefficient I (R) must be determined self
consistently in terms of the screening length defined belo

To complete the mean-field description, we introduce t
continuity equations. One is the continuity equation for t
droplet distribution functionf (R,t):

] f ~R,t !

]t
1

]@Ṙf ~R,t !#

]R
5 j d~R,t !, ~25!

where j d(R,t) is given by Eq.~8!, and the total number o
droplets per scaled volume is related tof (R,t) through:

N~ t !5E
0

`

f ~R,t !dR. ~26!

The time derivative of the mass conservation equation,

x~ t !1E
0

`

vRdf ~R,t !dR5f, ~27!

gives rise to the other continuity equation:

]x~ t !

]t
52aE

0

`

Rd21Ṙf ~R,t !dR2E
0

`

vRdj d~R,t !dR.

~28!

By substituting Eq.~24! above, we get

]x~ t !

]t
52x~ t !E

0

`

I ~R! f ~R,t !dR

1E
0

`

I ~R!R21f ~R,t !dR2E
0

`

vRdj d~R,t !dR.

~29!

In the same manner as in Ref.@7#, an equation of motion for
the local concentration fieldu(r ,t) in the vicinity of thei th
droplet is postulated:

]u~r ,t !

]t
5¹2u~r ,t !2j22u~r ,t !1Sb2Sn2aQid~r2r i !,

~30!

where the contribution from the other droplets is introduc
by a screening lengthj, a background fieldSbj2, and a
source fieldSnj2. If we consider the limit of this equation fa
from any droplet, we obtain

]x~ t !

]t
52j22x~ t !1Sb2Sn , ~31!

which, by comparison with Eq.~29!, immediately gives
-
n.

.
o
e

d

j225E
0

`

I ~R! f ~R,t !dR, ~32!

Sb5E
0

`

I ~R!R21f ~R,t !dR, ~33!

and,

Sn5E
0

`

vRdj d~R,t !dR. ~34!

By substitutingSb2Sn in Eq. ~30! and defining the field
c(r ,t)5u(r ,t)2x(t), we can rewrite Eq.~30! as

]c~r ,t !

]t
5¹2c~r ,t !2j22c~r ,t !2aQid~r2r i !. ~35!

The solution of this equation can be expressed in terms
time-dependent, screened Green’s function:

c~r ,t !52
a

~2p!dE
0

t

dsE ddk e2~k21j22!s

3eik•~r2r i !Qi~ t2s!, ~36!

and, makingQi(t2s).Qi(t),

c~r ,t !52QiV~r2r i ,j,t !, ~37!

where

V~r2r i ,j,t !52
a

~2p!dE ddk
12e2~k21j22!t

~k21j22!
eik•~r2r i !.

~38!

For t@1, V(r2r i ,j,t) can be identified with the steady
state, screened Green’s function,V(r2r i ,j)5exp(2ur
2r i u/j)/ur2r i u in 3D; and V(r2r i ,j)5K0(ur2r i u/j) in
2D, whereK0 is the zeroth-order modified Bessel functio
Evaluating Eq.~37! at the boundary of the droplet (ur2r i
u5Ri) gives

1

Ri
5x~ t !2QiV~Ri ,j,t !. ~39!

We convert the discrete definition of average of a funct
h(R),^h(R)&5@1/N(t)#( ih(Ri), into a continuum defini-
tion, h(R)5*0

`h(R) f (R,t)dR/*0
` f (R,t)dR. Using Eqs.~14!

and ~31!, we can write

(
i

Qi5N~ t !$@V~R,j,t !#21x~ t !2@RV~R,j,t !#21%

52
1

a

]x

]t
2Qnucl5

1

a
j22x~ t !2

1

a
Sb1

1

a
Sn2Qnucl .

~40!

Thus, we can identifyI (R)5a/V(R,j,t) and

j225aE
0

` f ~R,t !

V~R,j,t !
dR, ~41!
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Sb5aE
0

` f ~R,t !

RV~R,j,t !
dR, ~42!

and, Sn5aQnucl according to Eq.~34!. Noting that Qi

5Ri
d21Ṙi , and dropping thei subindex, the continuous ver

sion of the growth law is, from Eq.~37!,

Rd21Ṙ5
1

V~R,j,t !S x~ t !2
1

RD , ~43!

and x(t) is obtained as the time integral of Eq.~31!, with
Eqs.~34!, ~41!, and~42!.

This mean-field approach suffers from the same dra
backs as the original mean-field theory for the Ostwald r
ening regime@7#: it is inapplicable to large volume fraction
where the screening lengthj is comparable to the averag
radius of the droplet, since under the Thomas-Fermi appr
mation, the droplets are treated as point sources and s
For example, there is no solution for this set of equations
f.0.085 in 2D and forf.0.06 in 3D.

V. RESULTS AND DISCUSSION

Time evolution is determined by three parameters:
nucleation parameterx0 , the width dRc of the nucleation
rate distribution function, and the total volume fractionf.
The first two determine the initial radius distribution functio
and the subsequent crossover behavior, while the effec
f persist to late times. The time evolution can be divid
into three stages: nucleation, diffusive growth, and coars
ing. Nucleation of droplets produces the initial depletion
the supersaturation, which decays faster for lowx0 and high
f. While nucleation is taking place, the first nuclei start
grow, seizing material from the background supersatura
x(t). The diffusive growth stage is marked by the high i
crease in slope of the mean radiusR(t) and the correspond
ing decrease in the slope of the supersaturationx(t). During
this period, the droplets scarcely interact, and their num
stays nearly constant. Finally, when the supersaturatio
sufficiently reduced, its role is confined to mediating the e
change of material between individual droplets. The criti
radius for nucleation becomes slaved to the mean radiu
droplets, i.e.,Rc51/x(t)5R(t) @i.e., C0(t)→0]. Growth is
a global, interactive phenomenon, and time evolution p
ceeds through Ostwald ripening.

Figure 1 shows the droplets and background diffus
field for the time evolution of a 2D system with volum
fraction f50.05. In the initial nucleation regime, the bac
ground is homogeneous. When the number of dropletsN(t)
reaches its maximum, the structure in the background sig
the imminent decay ofN(t). In the diffusive regime, mos
droplets are growing at the expense of the background su
saturation. Note that they are located in the depleted whit
light gray regions. Finally, the ripening regime shows
clearly correlated structure in the background.

Figure 2 shows the dependence of the mean radiusR(t),
the droplet number per unit volumen(t), and the supersatu
ration x(t) on x0 andf for 3D systems. The top row com
pares different values ofx0 , (1/7, 1/6, 1/5, and 1/4.5) for a
volume fractionf50.05; and a nucleation rate width pro
portional to the interface (dRc50.05Rc). The bottom row
-
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compares different values off(0.04, 0.065, and 0.083! for
x051/6 and a nucleation rate density widthdRc

5(A6x0)21. As expected, the nucleation parametersx0 and
dRc are irrelevant for the late stages, and the functio
R(t), n(t), and x(t) collapse onto correspondingl
f-dependent universal functions. This is clearly shown in
top row of Fig. 2, where the three functionsR(t), n(t), and
x(t), evaluated at different values ofx0 , collapse onto
x0-independent functions at late stages. The apparent o
lapping at late times of the functionsn(t) corresponding to
different f is due to the relative displacement of the ma
mum of n(t). We discuss the late-stage,f-dependent uni-
versal function forR(t) below.

The crossover to thef-dependent scaling form can b
relatively fast, or take several decades in time, depending
the nucleation history of the system. In the mean-field
proach@15,3,4#, it has been customary to rescale lengths
x0 and time byx0

3 . The nucleation rate is then expressed
terms of the variable y5x(t)/x0 @with y05y(t50)
5f/x0]. We will discuss this rescaling later. For now w
concentrate on the activation energy, which ind dimensions
is given byEc /(kT)51/yd21. Thus, the nucleation rate in
creases and the maximum ofn(t) is higher and occurs
sooner with largey, i.e., with decreasingx0 and increasing

FIG. 1. Time evolution describing nucleation, growth and coa
ening for a two-dimensioinal system with volume fractionf
50.05 andx051/2. Lengths have been scaled by the sideL of the
box, so that the picture has side equal to 1. Top left: nuclea
regime (t59500). Top right: configuration for the maximum num
ber of droplets (t51.153105). Bottom left: diffusive growth re-
gime (t54.793105). Bottom right: ripening regime (t55.7
3107). The gray scale used in the background is relative to
supersaturationx(t) for the corresponding time. The darkest gra
corresponds to@u(r ,t)2x(t)#/x(t)>0.12; the lightest gray corre
sponds to20.04<@u(r ,t)2x(t)#/x(t),0.04 and the white color
to @u(r ,t)2x(t)#/x(t)<20.08. Large droplets generally are in th
white region, where there is depletion of the supersaturation, w
disintegrating droplets are in the dark gray regions of high diffus
fields. To facilitate visualization, droplets are drawn about th
times larger their size. Generally, even the nearest droplets a
least two or more radii away.
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FIG. 2. Left, middle, and right panels show log-log plots for the mean radiusR(t) ~divided by the critical radiusRc), the droplet number
per unit volumen(t), and the supersaturationx(t) @divided by the initial supersaturationx(t50)5f] for a three-dimensional system. To
row: f50.05 andx051/7 ~thick solid line!, 1/6 ~long-dash line!, 1/5 ~short-dash line!, and 1/4.5~thin solid line!. The nucleation rate density
width is chosen asdRc50.05Rc . Bottom row:x051/6 andf50.083~thick solid line!, 0.065~long-dash line!, and 0.04~short-dash line!;
dRc5(A6x0)21.
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f. For smallx0 and not too large volume fraction, the initia
depletion ofx(t) is rapid and diffusive growth is not impor
tant, favoring a relatively early onset of Ostwald ripenin
with its characteristic power-law behavior. In agreement w
previous results@15#, this behavior takes place fory0>0.3. It
is depicted in Fig. 2 for volume fractionsf50.0520.065
andx051/6 and 1/7.

For y0<0.25, however, diffusive growth plays an impo
tant role. In Fig. 2 this is seen forf50.05,x051/5(y0
50.25); f50.04,x051/6(y050.24); and f50.05,x0
51/4.5(y050.22). Consider this last case, represented
the thin solid line in the top panel of Fig. 2. Att;53104,
,
h

y

the value ofx(t) is still large. The few droplets which hav
nucleated have nearly equal radii. The excess of supers
ration is eliminated by the positive diffusive growth of a
droplets, which hardly interact. Thus their number stays c
stant, signaled by a plateau in the functionn(t) and a narrow
droplet distribution function, whileR(t) markedly increases
producing an abrupt decrease inx(t). The diffusive growth
regime lasts about a decade. Fort.106, x(t) has decreased
substantially, and is well below what would be its corr
sponding asymptotic value at the same time. Hence, drop
can no longer grow at its expense. Ostwald ripening th
takes over as the dominant mechanism of phase separa
FIG. 3. Logarithmic-linear plot showing the supersaturationx(t) ~inner axes! and the quantityC0(t)5Q0(t)21/R(t) ~outer axes! for
f50.05. The left panel corresponds tox051/4.5 and the right panel tox051/6.
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However, because the droplet distribution function is s
narrow, it takes some time for the system to develop a pro
dispersion of radii, large enough for the ripening mechan
to become dominant. This ‘‘time lag’’ can be seen in t
range t;106–107, where there are plateaus inR(t) and
x(t), while n(t) decreases, as droplets slowly disappear.

Figure 3 illustrates the behavior of the coefficientC0(t)
5Q0(t)21/R(t), where Q0(t) was introduced in Eq.~16!
above, for the system just described. This coefficient is
portant during the diffusive regime. It is near zero duri
nucleation, but then exhibits large variation during the dif

FIG. 4. Plots ofR3(t) vs t ~gray solid line! and corresponding
linear fitting ~long-dashed line!. The left column corresponds tof
50.05 and different values ofx0 . The three different values ofx0

produce a consistent coarsening coefficientK(f50.05). The right
column corresponds tox051/6 and different values off. The
coarsening coefficientK(f) increases monotonically with volum
fraction.
l
er

-

-

sive growth regime, when the supersaturation falls abrup
It again becomes zero as the system reaches the steady
Ostwald ripening regime, where the supersaturation beco
slaved to the mean radius,Q0(t).x(t).1/R(t).t21/3.

Figure 4 shows linear fittings forR3(t), for different pa-
rameters. The left column corresponds tof50.05, and dif-
ferent values ofx0 . These plots confirm that different value
of x0 give, for late stages, a consistent coarsening rateK(f)
independent ofx0 . The right column corresponds tox0
51/6, and different values off. These plots also confirm
that the coarsening rateK(f) is a monotonically increasing
function of the volume fractionf. The value forf50.083 is
only indicative, since this run has not completely reached
scaling regime and there is considerable diffusive beha
still present. For late stages, the dependence of the dro
number density on the coarsening rateK(f) is given by
n(t)5n(t1)Rd(t1)/@R3(t1)1K(f)t#d/3 @7#, where t1 desig-
nates the time at which the linear fitting starts in each p
andR(t1) is the corresponding value of the mean radius. T
linear fittings of n(t1)R3(t1)/n(t) vs. t produce the same
coarsening rateK(f) as the one obtained withR3(t) and
shown in Fig. 4.

Figure 5 shows the dependence of the mean radiusR(t),
the droplet number per unit volumen(t), and the supersatu
rationx(t) on x0 andf for two-dimensional systems. Thre
values ofx0 (1/4, 1/3, and 1/2), are shown for a volum
fraction f50.05. The thin solid line, on the other han
shows the corresponding quantities forf50.10 and x0
51/3. For these plots, the nucleation rate width is taken
proportional to the interface (dRc50.05Rc). The depen-
dence of these functions uponf and x0 agrees with the
three-dimensional case. The nucleation parametersx0 and
dRc are irrelevant for the late stages, and the functio
R(t), n(t), and x(t) collapse onto correspondingl
f-dependent universal functions. Forf50.05, the coarsen
ing coefficient isK(0.05);0.43 for x051/4 and 1/3;x0
51/2 still has not reached this value, givingK(0.05);0.39
for the last stage reached by the simulation. The run w
f50.10 has not completely reached the scaling regime.
the last stages shown in the figure, there is a measured c
ening coefficientK(0.10);0.94, although we expect thi
value to change for later times. The late-stage,f-dependent
results obtained both in 2D and 3D are consistent with p
FIG. 5. Left, middle, and right panels show log-log plots for the mean radiusR(t)/Rc , the droplet number per unit volumen(t), and the
supersaturationx(t)/f for a two-dimensional system. The thin solid line corresponds tof50.10 andx051/3. The other three lines
correspond tof50.05 and different values ofx0 :x051/4 ~thick solid line!, 1/3 ~long-dashed line!, and 1/2~short-dashed line!. The
nucleation rate density width is chosen asdRc50.05Rc for all cases.
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vious results for late stages@6–8# and are a consequence
having incorporated the correlations among droplets in
dynamical equations.

Figure 6 shows the completion timet, defined byx(t
5t)5x(t50)/25f/2 for both 2D and 3D. As has bee
pointed out@24#, the completion time is an experimental
convenient quantity for studying nucleation. To estimate
completion time, one must consider both droplet format
and growth. The third panels in Figs. 2 and 5 clearly sh
that t5t occurs during the growth stage. Figure 7 shows t
schematic diagrams of the different regimes, nucleation,
fusive growth and ripening, and their corresponding cro
over regions, as function of the nucleated volumexn51
2x(t)/f andf ~left panel! or x0

21 ~right panel!.
Some initial and intermediate times for the radius dis

bution functionsf (R,t) for f50.05 andx051/6 are shown
in Fig. 8. The top panels showR(t), the droplet number pe
unit volumen(t) and the critical radiusRc(t)51/x(t). The
vertical bars indicate the time at which the droplet distrib
tion functions are depicted in the lower panels. The th
columns differ in the widthdRc . The left column corre-
sponds todRc50, the middle column todRc50.05Rc , and
the right column todRc5(A6x0)21. The solid line repre-
sents the results of the mean-field theory that includes
droplet correlation effects. The left column corresponds
dRc50, i.e., when all the droplets are nucleated with t
critical radius. This extreme situation depicts clearly the d
ferent mechanisms of nucleation, growth, and ripening.

With the nucleation of critical droplets,f (R,t) develops a
high peak centered atRc . As supersaturation diminishes,Rc
increases and the newly nucleated droplets have larger
than the older ones, so thatf (R,t) is asymmetric, as shown
in the light-gray shaded distributionf (R,t5t1). The ‘‘low
shoulder’’ of the distribution atR.18 corresponds to the
first nucleated droplets, while the high peak atR.22 corre-
sponds to the newer droplets. The maximum number
droplets is reached att5t2. Before this time none of the
originally nucleated droplets have disappeared. The ab
dissolution of many subcritical droplets aftert2 leads to a
sharp decay inn(t), for t.t2. The distribution function
f (R,t5t2) has a high peak forR.22.^R(t)&. At the right
e

a
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o
f-
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-
e

e
o

-

dii

f

pt

of this peak, the distribution falls very rapidly to zero, and
the left of the peak, the distribution has a long tail. Th
excessive population of small droplets causes^R(t)& to de-
crease towards the kink att2. Immediately aftert2, these
small droplets dissolve,n(t) decreases and̂R(t)& increases
sharply while f (R,t) becomes almost symmetric with
small tail for R,^R(t)&. The dissolution of the small drop
lets allows ax(t) high enough to nucleate new droplet
Intensive nucleation and dissolution of small droplets occ
betweent2 and t4 and the new droplets produce the seco
kink of n(t) at t4. The coarsening of droplets produces
hump in f (R,t5t4) for R.^R(t)&, which becomes a secon
peak betweent4 and t5, creating a bimodal distribution
f (R,t) and a second kink in̂R(t)&. At exactly this point,
Rc(t) crosseŝ R(t)&, ending a subcritical stage, with man
droplets smaller than the critical size. Aftert5 the peak for
R,^R(t)& rapidly decreases, while the coarsening peak
creases and moves towards largerR’s.

The middle column in Fig. 8 shows the case when
width dRc is comparable to the interface thickness. T
mechanisms are similar but ‘‘washed out’’ due to the disp
sion in radii, and the subcritical stage ends sooner. Th

FIG. 6. Completion timet as function of the volume fractionf,
for two-dimensional systems~empty squares! and three-
dimensional systems~filled circles!. The nucleation rate density
width is dRc5(0.5Rc /x0)1/2 for 2D anddRc5(A6x0)21 for 3D.
e

FIG. 7. Schematic diagram of the different regimes, nucleation~N!, diffusion ~D!, and ripening~R! as function off ~left! or x0

21 ~right!
and the nucleated volumexn512x(t)/f. The narrow regions between N andD and betweenD andR indicate a crossover between th
corresponding regimes. The left panel,f2xn , is obtained forx051/6 and the right panel,x0

212xn , is obtained forf50.05.
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FIG. 8. These plots correspond to a three-dimensional system withf50.05 andx051/6. The top panels show the mean radiusR(t), the
droplet number per unit volumen(t), and the critical radiusRc(t)51/x(t). The vertical bars indicate the time at which the drop
distribution functions are depicted in the lower panels. The three columns differ in the widthdRc . The left column corresponds todRc

50, the middle column todRc50.05Rc , and the right column todRc5(A6x0)21. Each of these functions is obtained by averaging 25 r
with a maximum number of nucleated droplets.1000. The solid line represents the results of the mean-field theory that includes the d
correlation effects.

FIG. 9. These plots correspond to a two-dimensional system withf50.05 andx051/3. The top panels show the mean radiusR(t), the
droplet number per unit volumen(t), and the critical radiusRc(t)51/x(t). The vertical bars indicate the time at which the drop
distribution functions are depicted in the lower panels. The three columns differ in the widthdRc . The left column corresponds todRc

50, the middle column todRc50.05Rc , and the right column todRc5(0.5Rc /x0)1/2.
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‘‘smoothening’’ effects are even greater for the stand
width dRc5(A6x0)21, shown in the third column. The soli
line distribution functions in the second and third panels r
resent our mean-field solution to the equations, based on
Thomas-Fermi approximation. These are the best results
predictions of the mean-field solution tend to worsen w
largerx0 and/or with largerf.

The same qualitative trends for the distribution functi
are observed in two-dimensional systems, as shown in Fi
These plots correspond to two-dimensional systems witf
50.05 andx051/3. As before, the top panels show the me
radiusR(t), the droplet number per unit volumen(t), and
the critical radiusRc(t)51/x(t), while the vertical bars in-
dicate the time at which the droplet distribution functions a
depicted in the lower panels. The three columns differ in
width dRc . The left column corresponds to critical drople
(dRc.0), the middle column to droplets nucleated with
width proportional to the interface (dRc50.05Rc), and the
right column to the standard widthdRc5(0.5Rc /x0)1/2.

Figure 10 shows the scaled droplet distribution functio
for three-dimensional and two-dimensional systems. The
solid line corresponds to the infinite dilution limit (f50),
and is obtained through an exact analytical expression g
by Lifshitz and Slyozov@5#. The finite volume fraction func-
tions shown with the triangles and circles correspond to
late stage coarsening regime:f50.04 ~triangle! and f
50.083 ~circle! for the three-dimensional system, andf
50.05 ~triangle! and f50.10 ~circle! for the two-
dimensional system. The effects of nonzero volume fract
is to lower the peak and widen the width of the distributi
function, which becomes more symmetric for higher volum
fraction. The dependence on the volume fraction of both
distribution function and the coarsening rate are features
arise naturally in our formalism, and that are absent in
Langer-Schwartz model.

Figure 11 shows a comparison between the simula
results, our Thomas-Fermi analytical solution and the in
gration of the isolated-droplet, mean-field continuity equ
tion. The figure shows the mean droplet radiusR(t) and the
droplet densityn(t) for a three-dimensional system withf
50.05,x051/6, anddRc50.05Rc . The Thomas-Fermi ap
proximation ~long-dashed line! agrees very well with the
simulation results~thick black line!. The agreement is goo
for small x0 , and conversely, deteriorates for largerx0 ~or
largerf). The integration of the continuity equation~short-

FIG. 10. Scaled droplet distribution functions for thre
dimensioinal and two-dimensional systems. The thin solid line c
responds to the infinite dilution limit (f50). The finite volume
fraction functions shown with the triangles and circles corresp
to the late stage coarsening regime.
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dashed line! has been performed straightforwardly, witho
the various assumptions used by Langer-Schwartz. We h
also eliminated the restriction of nucleating only supercriti
droplets. Naturally, the agreement with the simulation res
deteriorates for later times.

Concerning scaling, we note that the original mean-fi
theory @15# contains one independent variable,y5x(t)/x0 .
Therefore, all the results can be expressed in terms of
variable and the nucleation rate width, if one defines n
radii r and timet as r5x0R and t5x0

3t. However, this
requires the coarsening rateR3(t)/t5r3(t)/t to be indepen-
dent off, which it is not. Figure 12 compares the results f
y050.32, considering (f,x0)5(0.08,1/4) and (0.04,1/8);
and the mean-field integration fory050.32. Notice that it is
only possible to collapse the curves for different volum
fractions during the initial and early times.

In conclusion, we have introduced a new model for nuc
ation and growth that combines steady-state homogene
nucleation theory with the Ostwald ripening mechanism a
includes the correlations among droplets. These correlat
originate in the interaction of the diffusional fields corr

r-

d

FIG. 11. For a three-dimensional system withf50.05,x0

51/6, anddRc50.05Rc , we compare the results of our simulatio
~thick black line!, the Thomas-Fermi approximation~long-dashed
line! and the integration of the continuity equation~short-dashed
line!.

FIG. 12. Comparison of the results obtained fory050.32 as
obtained forf50.08,x051/4 ~dark dotted line!; f50.04,x051/8
~gray dashed line!; and thef50 mean-field integration fory0

50.32~thin solid line!. The scaled mean radii,R(t)x0 , as function
of the scaled time,tx0

3 , agree during the initial and early times, b
as soon as the droplets start to interact, the curves start to dep
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sponding to each precipitate, and thus depend on the rel
position of the droplets. The set of self-consistent equati
naturally incorporates the crossover from the early-st
nucleation to the late-stage scaling regime. We have
sented simulations on both two and three dimensions.
have also presented a mean-field, Thomas-Fermi approx
tion that includes the effect of these correlations. A go
experimental candidate to test our results would be a latt
matched binary alloy during solid-state precipitation.
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APPENDIX

The multidroplet diffusion equation has a retard
Green’s function associated with it, which can be written ind
dimensions as

Gd~r ,r 8,t,t8!5
a

@4p~ t2t8!#d/2
expS 2

ur2r 8u2

4~ t2t8!
D

5
a

~2p!dE ddke2k2~ t2t8!eik•~r2r8!, ~A1!

where, as before,a52p in 2D anda54p in 3D. A formal
solution of Eq.~10! in terms of the Green’s function is

u~r ,t !5x~ t !2a(
j 51

N E
0

t

dsexpS 2
ur2r j u2

4s DQj~ t2s!

~4ps!d/2
.

~A2!
ll.

r,
.
d

A
v.
ive
s
e
e-
e
a-

d
e-

d
cil

The steady-state solution of the previous equation is obta
by taking the limit t→` in the second term. This is mor
easily done by using the Fourier transform ofGd(r2r 8,t
2t8):

lim
t→`

a(
j 51

N E
0

t

ds Qj~ t2s!

expF2
ur2r j u2

4s G
~4ps!d/2

5a(
j 51

N

QjE ddk

~2p!d eik•~r2r j !E
0

`

ds e2k2s. ~A3!

In the second term, we recognize the stationary Gree
function:

Gd~r2r 8!5aE ddk

~2p!d

eik•~r2r8!

k2
, ~A4!

which can be written asG3(r2r 8)5ur2r 8u21 or G2(r
2r 8). ln(ur2r 8u/L), whereL is the system size. One ca
solve for the source coefficientQi by averaging the concen
tration field over the surface of thei th particle and setting
that equal to the local concentrationu(Ri)51/Ri :

1

Ri
5x~ t !2QiGd~Ri !2a(

j Þ i

N

3E
0

t

dsexpS 2
ur i2r j u2

4s DQj~ t2s!

~4ps!d/2
. ~A5!

In this equation, one approximation has been used: the ti
dependent Green’s function in the integral over dropleti has
been replaced by the stationary Green’s function.
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